It may help to first review where each of the main trigonometric functions are positive and negative. Indicate the quadrants where each function, is positive and negative.

1. $y=\sin (x)$

2. $y=\cos (x)$

3. $y=\tan (x)$

Using special right triangles find all the solutions of θ to the equations in degrees between 0° and 360°
4. $\sin (\theta)=\frac{\sqrt{3}}{2} K^{\text {OP }} 60^{\circ}$ ar 120

5. $\frac{2 \sin (\theta)}{2}=\frac{-1}{2}$ 210 or 330°

$$
\sin (\theta)=\frac{-1}{2} \leftarrow \frac{\text { OPP }}{H 4 P}=-1
$$

$\sin ^{-1(1 / 2)} \quad-30$

6. $\sqrt{2} \cos (\theta)-1=0$

$\frac{\sqrt{2} \cos (\theta)}{\sqrt{2}}=\frac{1}{\sqrt{2}}$
$\cos (\theta)=\frac{1}{\sqrt{2}}<H_{4 T}=\sqrt{2}$

7. $2 \cos (\theta)+\sqrt{3}=0$

$$
\begin{aligned}
& \frac{2 \cos (\theta)}{2}=\frac{-\sqrt{3}}{2} \\
& \cos (\theta)=\frac{-\sqrt{3}}{2} \leftarrow A D J
\end{aligned}
$$

FOR SINE, USE THE CALCULATOR'S ANswER, θ, AND TO FIND THE OTHER ANSWER USE 180-O.

For CuSine, use the calculmiort
ANSWER, θ, AND TO FIND THE GTIER ANSWFR USE 360=O.

Using the circle find all the solutions of θ to the equations in degrees within the range $0^{\circ} \leq \theta<360^{\circ}$.
8. $\frac{\sqrt{3} \tan (\theta)}{\sqrt{3}}=\frac{-1}{\sqrt{3}}$ 150° or 330° $\tan \theta=\frac{-1}{\sqrt{3}} \leftarrow O P P=-1$

9. $\sin (\theta)=\frac{1 \leftarrow O P P}{1 \leftarrow}$
90°
This is A Quadrantal angle. So, consider DRAWING A TRIANGLE JUST BEFORE IT COLLAPSES AT 90° AND THEN WRITE WHAT THE MEL SURFS OF THE SIDES WOULD BE AT 90°

10. $\cos (\theta)+1=1$

$$
\operatorname{Cus}(\theta)=\frac{0}{1} \leftarrow A D J
$$

90° m 270°

$$
\cos ^{-1}(0)
$$

Using the circle find all the solutions of x to the equations in radians within the range $0 \leq x<2 \pi$

13. $\cos (x)=-\frac{1}{2} k A D=-1 \pi=2 \quad \frac{2 \pi}{3}$ of $\frac{4 \pi}{3}$
14. $\tan (x)=\frac{1}{1} \angle O P D$
$\frac{\pi}{4}$ or $\frac{5 \pi}{4}$ $\tan ^{-1(1) / \pi r \mathrm{Frac}_{1 / 4}}$

p. 52

Using the circle find all the solutions of x to the equations in radians within the range $0 \leq x<\mathbf{2 \pi}$

Using the circle find all the solutions of θ to the equations in degrees within the range $0^{\circ} \leq \theta<360^{\circ}$.

$\theta_{1}=\sin ^{-1}(0.78)-\frac{128.74^{\circ}}{\text { ONE ANS }}$
$\theta_{1} \approx 51.2606^{\circ} \quad \sin ^{1}(0,78)$

$\theta_{2}=128.7394^{\circ}$

19. $\sin (\theta)=-0.41$ $\theta_{0}=\sin ^{-1}(-0.41)$ $\theta_{0} \approx-24.20$

sirrle-0.41) Ans 3 3 6.

ADD 360° to FIND COTERMINAL ANGLE BETWEEN 0° AND 360° $\theta_{1} \approx 360+-24.20=335.80^{\circ}$ $\theta_{2} \approx 180-24.20=204.20^{\circ}$

20. $\cos (\theta)=0.32$

$$
\theta_{1}=\cos ^{-1}(0.32)
$$

$$
\theta_{1} \approx 71.34^{\circ}
$$

$$
\theta_{2} \approx \underbrace{360-71.34^{\circ}}_{\text {THIS works for cosine }}
$$

$$
\theta_{2} x 288.66^{\circ}
$$

Using the circle find all the solutions of θ to the equations in degrees within the range $0^{\circ} \leq \theta<360^{\circ}$.

Which quadrant, if any, is described by the given constraints?
24. $\sin (x)>0$ and $\cos (x)<0$ Pos (4) NEG(-)

Quadrant III

25. $\cos (x)<0$ and $\tan (x)<0$ NEG(- NEG (-)

QuADRANT II

26. $\sin (x)<0$ and $\cos (x)>0$ NEG (-) Pos (+)

Quadrant IV

